Author Affiliations
Abstract
School of Physics and Technology, Spintronics Institute, University of Jinan, Jinan 250022, China
The Rashba effect and valley polarization provide a novel paradigm in quantum information technology. However, practical materials are scarce. Here, we found a new class of Janus monolayers VXY (X = Cl, Br, I; Y = Se, Te) with excellent valley polarization effect. In particular, Janus VBrSe shows Zeeman type spin splitting of 14 meV, large Berry curvature of 182.73 bohr2, and, at the same time, a large Rashba parameter of 176.89 meV·Å. We use the k·p theory to analyze the relationship between the lattice constant and the curvature of the Berry. The Berry curvature can be adjusted by changing the lattice parameter, which will greatly improve the transverse velocities of carriers and promote the efficiency of the valley Hall device. By applying biaxial strain onto VBrSe, we can see that there is a correlation between Berry curvature and lattice constant, which further validates the above theory. All these results provide tantalizing opportunities for efficient spintronics and valleytronics.
Journal of Semiconductors
2022, 43(4): 042501
Author Affiliations
Abstract
Spintronics Institute, University of Jinan, Jinan 250022, China
Over the past half a century, considerable research activities have been directing towards the development of magnetic semiconductors that can work at room temperature. These efforts were aimed at seeking room temperature magnetic semiconductors with strong and controllable s, pd exchange interaction. With this s, pd exchange interaction, one can utilize the spin degree of freedom to design applicable spintronics devices with very attractive functions that are not available in conventional semiconductors. Here, we first review the progress in understanding of this particular material and the dilemma to prepare a room temperature magnetic semiconductor. Then we discuss recent experimental progresses to pursue strong s, pd interaction to realize room temperature magnetic semiconductors, which are achieved by introducing a very high concentration of magnetic atoms by means of low-temperature nonequilibrium growth.
Journal of Semiconductors
2019, 40(8): 081501
Author Affiliations
Abstract
1 State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
2 Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3 College of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Praseodymium-ion-doped gain materials have the superiority of lasing at various visible wavelengths directly. Simple and compact visible lasers are booming with the development of blue laser diodes in recent years. In this Letter, we demonstrate the watt-level red laser with a single blue laser diode and Pr:YLiF4 crystal. On this basis, the passively Q-switched pulse lasers are obtained with monolayer graphene and Co:ZnO thin film as the Q-switchers in the visible range.
140.3480 Lasers, diode-pumped 140.3540 Lasers, Q-switched 140.7300 Visible lasers 
Chinese Optics Letters
2019, 17(7): 071402

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!